
Arithmetic Revisited

Lesson 5:

Decimal Fractions or Place Value Extended

Part 5:  Dividing Decimal Fractions, Part 2

1.  The “Fly In The Ointment”

The meaning of, say, 1 2 doesn't depend on whether w e represent theƒ

quotient as a common fraction or as a decimal fract ion. More specifically,
independently of how we elect to write the answer, 1 2 means theƒ

number that when multiplied by 2 yields 1 as the pr oduct.  However if we
elect to write the quotient as a common fraction we  use the notation 1

2 ;
while in the language of decimal fractions, the quo tient is represented
by 0.5.

One possible disadvantage of using common fractions  rather than decimal
fractions is that there are many different common f ractions that name the
same rational number.  For example, while 1 2 , it is  also equal to ,ƒ œ 1 1

2 2
2 3 4
4 6 8, , , etc.  On the other hand, when we use decimal fractions there is
only one way to represent the quotient 1 2; namely, as 0.5.ƒ 1

On the other hand, using common fractions allows us  to express the
quotient of any two whole numbers rather quickly.  For example, in the
language of common fractions, 139 201  .ƒ œ 139

201
2

However, representing this quotient in the form of a decimal
fractions presents a new challenge to us.

© Herbert  and Ken Gross 1999
1Actually, there is a fine point that we are ignoring.  Namely while 1 2  0.5, it is also equal to 0.50,ƒ œ
0.500, etc.  However to avoid this technicality we will agree to end the decimal representation after the
last non-zero digit.  For example,  we will write 0.25 rather than 0.25000, etc.  This is analogous to what
we do when we use common fractions.  Namely we pick the fraction which has been reduced to lowest

terms.  For example, even though 1 2 2
2 4 4œ ƒ œ, we do not usually write that 1 2 .

2More generally, if m and n are whole numbers and n 0 then m n .Á ƒ œ m
n
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To see why let's see what happens when we try to re present the quotient
5 6 as a decimal fraction.  Clearly it is a simple t ask to write the quotientƒ

as a common fraction, namely: 5 6 .  Proceeding as we  did in theƒ œ 5
6

previous part of this lesson we can use the divisio n algorithm, to obtain:

    
0. 8 3 3 3 3

6 5. 0 0 0 0 05 2 2 2 2

and no matter how many 0's we use to augment the di vidend, we are faced
with the fact that each time the algorithm tells us  that “6 goes into 20 three
times with a remainder of 2”.  In other words, the d ecimal fraction that
represents 5 6 consists of a decimal point followed by an 8 and anƒ

endless number of 3's!

This is where the fly gets into the ointment.  In t his particular example, we
saw that a problem arises when we try to express th e common fraction 5

6
as an equivalent decimal fraction.  Unfortunately, this situation turns out to
be the general rule rather than the exception.  Mor e specifically:

Given two whole umbers chosen at random, it is high ly likely that
the decimal fraction that represents their quotient  will be an
“ ” decimal.endless

Why this is the case is the topic of the next secti on.

2.  When Will the Quotient Be a Terminating Decimal?

For the common fraction to represent a decimal that  terminates, its
denominator must be a power of 10.  That is, a term inating decimal must be
a whole number of tenths, hundredths, thousandths e tc.  However, the only
prime factors of powers of 10 are 2 and 5.  Hence i f a divisor *i.e., the
denominator) has even one prime factor other than 2 's and 5's, the decimal
representation will never come to an end.
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Illustrative Example :

Express  as an equivalent common fraction whose3
8

denominator is a power of 10.

We may “decompose” 8 into a product of prime numbers by writing it as
2 2 2.  If we multiply 2 by 5 we get 10.  Hence if we  multiply each of‚ ‚

the three 2's by 5 we get 10  (or 1,000) which is, o f course, a power of3

10.  More specifically:
  2 2 2 5 5 5‚ ‚ ‚ ‚ ‚ œ

  (2 5) (2 5) (2 5) 10 10 10 10‚ ‚ ‚ ‚ ‚ œ ‚ ‚ œ 3

However, if we multiply the denominator of a fracti on by 5 5 5, we‚ ‚

must also multiply the numerator by 5 5 5; otherwise we change the‚ ‚

value of the fraction.

Hence we may rewrite  in the form  or .3 3 5 5 5 375
8 2 2 2 5 5 5 1,000

‚ ‚ ‚
‚ ‚ ‚ ‚ ‚

As a decimal  is 0.375375
1,000

Commentary :

•  If we wanted to do this problem strictly by usin g decimals, we know
that   is the answer to 3 8   If we now proceed as we  did earlier, we3

8 ƒ Þ

see that:

   

0 3 7 5
8 3 0 0 0

2 4
6 0
5 6

4 0
4 0

0

Þ

Þ

�

�

�

�

�

•  Notice that in doing the division we finally arr ived at a point where the
reminder was 0 when we subtracted.
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Practice Problem #1

Express the common fraction as an equivalent decima l fraction.3
40

Answer:  0.075

Solution :

We observe that the only prime factors of 40 are 2 and 5.  More
specifically:

  40 2 2 2 5.œ ‚ ‚ ‚

To obtain a factor of 10 we must multiply 2 by 5.  Since 40 has three
factors of 2 but only one factor of 5, we need two more factors of 5 in
order to obtain a power of 10.

With this in mind we multiply both numerator and de nominator of 3
40

by 5 5 to obtain:‚

  3 3 3 3 75
40 2 2 2 5 10 10 10 1,000œ œ œ œ œ

‚ ‚ ‚ #‚#‚#‚&‚ ‚ ‚ ‚
‚ ‚ ‚ ‚5 5 5 5

5 5 0.075

Notes:

•  We could again have obtained the same result by lon g division.
Namely:

   

0 0 7 5
40 3 0 0 0

2 8 0
2 0 0
2 0 0

0

Þ

Þ

�

�

•  Once again notice that we finally arrived at a p oint where the
remainder was 0 when we subtracted.

•  We might also have observed that  3,000 40 75.  He nceƒ œ

 3,000 thousandths 40 75 thousandthsƒ œ

In the language of decimal fractions the above equa lity becomes

 3,000 40 0.075ƒ œ
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Summary, So Far:

Definition :

A decimal is said to  if it has a .terminate last  non-zero digit

 --  Another way of saying this is to say that beyo nd a certain
number of places, the decimal has nothing but 0's.

• What we have shown in this problem is that the fr action  can3
8

be represented by the  decimal 0.375 (as well asterminating
0.3750, 0.37500, etc.).

• The important thing is that in order for a fracti on to be
represented by a  decimal, terminating mustit  be equivalent to a
common fraction whose  is denominator a power of 10 .

• However, the  that are factors of 10 are   prime numbersonly 2
and 5 .

• Hence, if when written in lowest terms, a common fraction has a
prime factor , it will  be equivalent to aother than 2 and/or 5 never
fraction whose denominator is a power of 10.

One might think that since we can write as many 0's  as we wish after the
decimal point that we are eventually bound to come to a place where the
decimal will terminate.  Unfortunately, as we menti oned earlier, this will
happen only if the denominator has no prime factors  other than 2 and/or 5.

To get an idea of what happens if the denominator d oes contain a prime
factor other than 2 or 5, look at the following exa mple.

Illustrative Example

Is there a common fraction whose denominator is a p ower of 10
that is equivalent to the common fraction ? 1

3

The key observation for answering this question is to recall that a
number is divisible by 3 if and only if the sum of it's digits is divisible
by 3.  Since any power of 10 has as its digits a 1 followed only by 0's,
the sum of its digits will always be 1 and hence ne ver divisible by 3.
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Commentary :

•  When we talk about common fractions we will alwa ys assume (unless
specifically stated to the contrary) that they are expressed in lowest
terms.  For example, the denominator of   is 6; whic h has a prime3

6
factor other than 2 or 5.  However, if we reduce  t o lowest terms it3

6
becomes , which is represented by the terminating d ecimal 0.5.1

2

•  The result has an interesting interpretation if we think in terms of
decimal fractions. Namely:

   

0 3 3 3
3 1 0 0 0

9
1 0

9
1 0

9
1

Þ

Þ

�

�

�

�

�

�

The above process shows us that at each step in the  division process,
we are saying “3 goes into 10 three times with  a re mainder of 1”.  Thus
no matter how many places to the right we extended our quotient, there
would always be a remainder of 1; and, hence, never  a remainder of 0.

The fact that there are many more numbers whose pri me factorization
contains prime numbers other than 2's and or 5's me ans that when we
express rational numbers as decimal fractions, the decimals will most
likely be non-terminating. 3

Practice Problem #2

Will the decimal fraction that is equivalent to the  common fraction 9
15

terminate?

Answer:  Yes

3For example, if we look at the whole numbers that are greater than 1 but less than 100, we see that only
#ß %ß &ß "!ß "'ß #!ß #&ß $#ß %!ß &! and 80 have no other prime factors other than just 2's and/or 5's.
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Solution:

This can be a bit tricky.  Namely, the denominator has a factor other
than 2 or 5. however the fraction is not in lowest terms.  In fact, we
can cancel the common factor 3 from the numerator a nd
denominator and see that:

         0.69 3 3 2 6
15 5 5 2 10œ œ œ œ‚

‚

Note:

•  We could  have obtained the same result by the di vision algorithm.
Namely:

   

0 6
15 9 0

9 0
0

Þ

Þ

� �

However, we wanted to emphasize the role of the deno minator in
converting a common fraction into a decimal fractio n.

Practice Problem #3

Will the decimal fraction that is equivalent to the  common fraction 2
15

terminate?

Answer:  No

Solution:

This time the fraction is in lowest terms.  Therefo re, since any power
of 10 has only 2's and/or 5's as prime factors, 15,  which contains 3
as a prime factor can  never be a divisor of any po wer of 10.
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Note:

Once again we could have gone directly to the divis ion algorithm
and obtained:

   

0 1 3 3
15 2 0 0 0

1 5
5 0
4 4

5 0
4 5

5

Þ

Þ

� �

�

�

It soon becomes clear that we can go on “forever” say ing “15 goes into
50 three times with a remainder of 5”.  This leads i n a natural way into
our  next section.

3.  An Interesting Property of Decimal Fractions.

When we tried to write  as a decimal fraction we sa w that the division1
3

yielded an endless sequence of 3's.  When we tried to write  as a decimal2
15

fraction we saw that after the digit in the  tenths  place (namely, 1) we again
obtained an endless sequence of 3's.   The fact is that when any rational
number is written in decimal form, the decimal will  either terminate or else
it will eventually repeat the same cycle of digits endlessly. 4  As an example
(but  not a proof of our assertion), let's try to r epresent  as a decimal6

7
fraction.  Using the “short division” format we see t hat

   
0 8 5 7 1 4 2

7 6 0 0 0 0 0 0 0 0

Þ Þ Þ Þ Þ

Þ % 5 1 3 1 6

Notice that when we started the division process ou r dividend was a
6 followed by nothing but 0's; and after the sixth decimal digit our dividend
was again a 6 followed by nothing but 0's.  Hence t he cycle of digits
“857142” will repeat endlessly.

4In fact if we think of a terminating decimals as eventually repeating 0's endlessly we may say that all
rational numbers can be expressed as non-terminating, repeating decimals.
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Was it a coincidence that in the two examples we pi cked in which the
decimal fraction did not terminate the decimal even tually repeated the
same cycle of digits endlessly?  The answer is that  it wasn't a coincidence.
The proof is actually quite elementary.  It is base d on what is known as the
Dedekind “Chest-of-Drawers” Principle .  The example below gives a
specific application of the principle (and why it h as the name that it does!)

Illustrative Example

Imagine that in a bureau drawer there are 100 separ ate white socks
and 100 separate black socks.  The room is dark and  you want to
make sure that you pick a matched pair of socks (th at is, either 2
white socks or 2 black socks).  What is the least n umber of socks
that you can take out of the drawer and still be su re that you have
such a pair ?

If all you took were 2 socks you might have a match ed pair but you may
also have picked one white and one black sock from the drawer.  It's
possible that the first two socks you picked gave y ou a matched pair.
However if this wasn't the case, it means that you have chosen one white
and one black sock.  Therefore, since the next sock  you choose must be
either while or black, you will then have either a black pair or a white pair.
The point is that since there are only two colors, you are guaranteed to
have a mixed pair if you pick any three socks. 5

As a second example, suppose there are 367 people i n a room.  Then even
allowing for a Leap Year, at least two of the peopl e in the room must have
been born on the same day (but not necessarily in t he same year).  Namely,
let's look at the case in which there are 366 peopl e in the room.  If we
already can find 2 who do then we've proven our cla im.  So suppose no two
of them celebrate their birthday on the same day.  Since there are 366
people in the room, it means that between them they  have used up every
possible day.  Therefore, in this case if another p erson enters the room, the
birthday of this 367th person must be celebrated on  the same day that one
of the others is celebrating.

5Notice that we aren't saying what color the matched pair is.  It would be a quite different if we had said
“What is the least number of socks you can take from the drawer to make sure that you have a white
pair?”.
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Practice Problem #4

Imagine that in a bureau drawer there are 100 separ ate white socks,
100 separate brown socks, 100 separate yellow socks  and 100
separate black socks.  The room is dark and you wan t to make sure
that you pick a matched pair of socks.  What is the  least number of
socks that you can take out of the drawer and still  be sure that you
have such a pair?

Answer:  five

Solution :

There are only 4 different colors. So if you took o ut only 4 socks,
there is a chance that by a stroke of either good o r bad luck, you
managed to get 4 different colored socks.  However, even in this
worst case scenario, no matter how lucky or unlucky  you deem
yourself to be, if you now take out a fifth sock, i t has to match one of
the other four socks.

These rather simple illustrations are a form of  De dekind's “Chest-of-
Drawers” Principle.  More specifically:

Dedekind's “Chest of Drawers” Principle :

If you have more items than you have drawers to put  them in, at least
one of the drawers must hold more than 1 item (actu ally, all of the
items could be in the same drawer; but at least two  of them must be).
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4.  Dedekind's Principle and Non-Terminating Decimal  Fractions

Let's now apply this idea to converting common frac tions into decimals.  In
particular, let's revisit the case of .  When we di vide  a number by 3 there1

3
are 3 possible remainders; namely, 0, 1, or 2.   Thi s concept applies to any6

denominator we may be using.  For example, if there  were 7 books in a
carton, when all the books were packed, there could  be at most 6 books
left because if there were 7 we could have filled a nother carton.  That is,
when we divide a whole number by 7, there are 7 pos sible remainders; 0, 1,
2, 3, 4, 5, or 6.7

In general when we divide a number by any non-zero w hole number n,
there are n, possible remainders.  Hence when we wr ite the common
fraction  as a decimal fraction, the decimal part m ust begin to repeatm

n
no later than by the time we get past the n  place i n the decimal.th

The fact that the decimal fraction that represents a rational number
eventually repeats the same cycle of digits gives u s a nice way to write
such a decimal.  Namely, we simply place a bar over  the repeating cycle of
digits.  For example,

0.3 stands for 0.3333......(where the dots indicate  the decimal never
ends)

0.216 stands for 0.216216......

0.216 stands for 0.216161616.....

Non-terminating decimal fractions are an interestin g intellectual topic but
they are not necessary in the “real world”.  For exam ple, even though we
can't express  exactly as a terminating decimal, we  can use terminating1

3
decimals to get very good approximations.  For exam ple,

 0.33  and    œ œ œ Þ33 99
100 300  1 100

3 300

Hence 0.33   1 100 1
3 300 300� œ œ� 99

300

6An easy way to see this is to think of packing books into cartons, each of which holds 3 books.  When all
the books are packed, there can be either none, 1 or 2 books left because if there were at least 3 books left,
we could have filled another carton.

7(Be careful here, there are not 6 remainders but 7.  That is, there are 6 whole numbers between (and
including) 1 and 6 but there are 7 whole number between 0 and 6.
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--  Thus, for example, if our measuring instrument cannot measure to
closer than the nearest hundredth of an inch, since  the difference
between  and 0.33 is  (that is, an error 1 part per  300) we may in1 1

3 300
this case use 0.33 as a sufficiently accurate appro ximation for 1

3 .
--  And if we had a more sensitive measuring instru ment, say one that
could measure to the nearest millionth of an inch, we could use
0 333333 as an approximation for  because:Þ 1

3

    1
3 �

333,333
1,000,000 œ

  1,000,000 999,999
3,000,000 3,000,000 3,000,000

1� œ

and an error of 1 part per 3,000,000 is less of an error than 1 part per 1
million.

In other words, when a common fraction cannot be ex pressed exactly
as a terminating decimal, we can “chop off” the decim al (the technical
term is that we say are  the decimal) after a suffi cienttruncating
number of places and use this as an approximation f or the exact
answer. 8

A Note About Using the “Bar”

There is a tendency for some people to write “....” t o stand for “and so on”.
The trouble with this notation is that what “and so on” means can vary
from person to person.  One nice example is the fol lowing sequence of
numbers.

 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31,......

Based on what rule I am using to generate the above  sequence of numbers,
do you think you can you guess the next number?  If  you think you can, be
warned that the next number is neither 30 nor 31.  More specifically, the
above list represents the number of days in a month  starting with March in

8In fact, we do this quite often in mathematics.  For example, the number  (which is the ratio between1

the circumference and  diameter of a circle) was known to the Ancient Greek mathematician and
philosopher, Archimedes, to be more than 3  but less than 3 .  It's actual value in decimal form begins10 1

71 7
with 3.14159......  However, in many situations we use 3  as the  value of 1

7 1.  As you can easily verify , the
decimal form of 3  begins as 3.142.... Notice that to the nearest hundredth this is the same value of 1

7 1

when it's rounded off to the nearest hundredth.  Hence, even though 3 , whenever we do not need1 Á "
(

more than accuracy to the nearest hundredth as may replace  by 3 .1
1
7
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a non-Leap Year (in other words, the next number sh ould be 28 because it
is the number of days in February in a non-Leap Yea r).9

The point is that once we put the bar above the rep eating cycle of digits,
we no longer have to guess what “and so on” means.  T hat is, if we see the
notation 0.215 67, we know at once that it means 0.2 15676767....; where in
this case “and so on” means that the cycle “67” repeats  endlessly..

Practice Problem #5

Write the first 7 digits of the decimal fraction 0 8 47Þ Þ Þ

Answer:  0.8478478

Solution :

The bar over the sequence of digits 874 means that the cycle of
digits “847” repeats endlessly after the decimal poin t.  Hence the
first 7 digits are 8478478.

Notes :

•  Again, the most common mistake students make is they simply
ignore the bar and replace 0 847 by 0.847.Þ

•  0.8478478 is a very good approximation for 847    In fact:!Þ Þ

  0 847  0.8478478 0 000000047847Þ œ Þ Þ �

•  In the event that the above error was  deemed to   be too great, we
could approximate the value of 0 847 by writing more  digits, forÞ

example, 0.8478478478 etc.

•  In the real  world we world eventually reach a p oint where we
couldn't even measure the error because it would be  too small.. In
other words even if we didn't know the exact value of 0 847, weÞ

would eventually find a terminating decimal that wa s “close
enough”.

•  With respect to this problem, rounded off to the  nearest millionth,
!Þ)%()%() Þ à becomes 0 847848 and what we could say in this case is
that rounded off to the nearest millionth, 0 847 0 847 848Þ œ Þ

9Notice that if you had been told to write the number of days in each month of a non-Leap year starting
with March” you would not have had any trouble guessing that the missing number was 28; but without
your knowing what the pattern was, the phrase “and so on”  could be easily misinterpreted by you.  In
particular, there are man ways to justify why you got a different answer but it still wouldn't have been the
one that was required by the author of the sequence.
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Practice Problem #6

 Write the first 7 digits of the decimal fraction 0 847Þ

Answer:  0.8474747

Solution :

This resembles the previous problem except that the  bar is only over
the 4 and the 7.  This means that the repeating cyc le begins after
the 8,  Hence this time the decimal is 0 84747474747 ...; and roundedÞ

off to the nearest ten millionth it would be 0.8474 747

Practice Problem #7

Is there a rational number that is denoted by 0 874?Þ

Answer:  No

Solution

This is analogous to asking “Is it possible to go 4 miles further after
you've gone as far as is humanly possible?”  In othe r words the bar
over the 7 tells us that the 7 is repeated without end.  Hence it cannot
be followed by a 4.

5. A Closing Thought

There are many valid reasons to support why student s prefer decimal
fractions to common fractions.  However there is on e overriding advantage
of common fractions that cannot be ignored.  Namely  much of our work
with rational numbers is involved with the concept of rates; and finding a
rate requires that we divide two numbers.  Such a q uotient is easily
expressed in the language of common fractions.  How ever, as we have just
seen, problems can arise when we use decimal fracti ons to represent the
quotient of two whole numbers.

Among other things, it is much easier to recognize t he that  represents6
7

the number that is defined by 6 7 than it is to reco gnize that 0.  isƒ 857142
the answer to 6 7. Moreover, if wed did want to repr esent 6 7 as aƒ ƒ

terminating decimal, the best we could do is round our answer off to a
certain number of decimal places. 10

10For example, computing 6 7 on my calculator yields 0.ƒ 857142857 as the answer, which we can round
off to as many as 7 decimal place accuracy; but the resulting number, although adequate for most real-life
applications, is just a good approximation to the exact answer...


