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Arithmetic Revisited

Lesson 2:

The Role of Place Value in the
Development of Whole Number Arithmetic

Part 5: An Introduction to Number Bases

Enrichment

1.  A Personal Preface

Prior to the “New Math”, little attention was paid to  the concept of different
number bases.  During the “New Math” era there was mu ch attention given
to different number bases but, for whatever reason,  the end result was that
in most places the study degenerated into a series of rote exercises.
Maybe because of this, the study of different numbe r bases has now been
minimized or even dropped from most elementary schoo l math curricula.

It is our hope that this lesson will provide insigh t into the structure of place
value arithmetic as well as to show the important d istinction between
numbers and how we elect to represent the numbers.  Moreover, having
students do problems in different number bases and then checking the
correctness of their computations by translating th e problems back into
the more familiar base-ten system provides an almos t painless drill
session.   With the proper choice of examples, stude nts curiosity can be1

expanded and their desire to work with numbers (act ually, numerals) is
often enhanced.

To begin with, the concept of place value is indepe ndent of the number ten.
All that is necessary is that we always “trade in” th e same number of one
denomination for one of the next greater denominati on .  It is our opinion2

that one problem in emphasizing base ten arithmetic is that there are a lot
of “number facts” (i.e., the addition and multiplicat ion tables) to internalize
and this can obscure the true meaning of place valu e.

© Herbert  and Ken Gross 1999

© Herbert  and Ken Gross 1999
1And from a teacher's point of view, trying to do arithmetic in a base other than ten helps teachers
appreciate the difficulties primary grade students encounter when they try to learn base ten arithmetic.
2In fact prior to the invention of place value twelve, rather than ten, was often sued as a base.  For
example there were 12 in a dozen and a gross was 12 twelve's.  Twelve was chosen over ten because it had
more proper divisors.  That is the proper divisors of 10 are only 2 and 5; while the proper divisors of 12
are 2, 3, 4 and 6.
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For example, suppose we had decided to trade in by two's rather than be
tens.  In that case, we would have what might be ca lled “The School
Children's Delight”; namely the only tables the stud ent would have to know
would be the  0 and 1 tables.  More specifically, w henever there were two of
any denomination we could trade them in for one of the next greater
denomination.

Since most of us can internalize numbers when money is involved, we
could play the game of “Let's Pretend” and imagine th at we have invented
a monetary system in which two $1-bills could be tr aded in for one $2-bill;
two $2-bills could be traded in for one $4-bill; tw o $4-bills could be traded
in for one $8-bill etc.  We could then represent an y whole number of dollars
by a sum that contained no more than one of any den omination.  For
example:

$8 $4 $2 $1
1 $1

1 $2
1 1 $3

1 $4
1 1 $5
1 1 $6
1 1 1 $7

1 $8
1 1 $9

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

We can begin to transform the above table into plac e value format by using
0's as place holders whenever needed.  That is:

$8 $4 $2 $1
1 $1

1 $2
1 1 $3

1 $4
1 1 $5
1 1 $6
1 1 1 $7

1 $8
1 1 $9
1 1 $10
1 1 1 $11

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

Ä

0

0 0
0

0

0 0 0
0 0
0 0
0
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Thus in base two arithmetic, rather than learning t o count:

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

children would learn instead:

 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011;

and the arithmetic tables would be:

  0 1                0 1
0 0 1 0 0 0
1 1 10 1 0 1

� ‚

At the kindergarten level, it's possible for childr en to learn a bit about base
two arithmetic at the same time they are learning, say, the colors of the
rainbow.  For example, rather than using money as a n illustration, they
could use tiles that had the rainbow colors. Thus r ather than exchanging
two $1-bills for one $2-bill, etc., they could exch ange 2 red tiles for
1 orange tile; 2 orange tiles for 1 yellow tile; 2 yellow tiles for 1 green tile, 2
green tiles for 1 blue tile; and 2 blue tiles for 1  purple tile.

By the first grade the tiles could be replaced by n umbers; and the students
could then use a “revisionist” monetary system to “gra duate" to base three
arithmetic and beyond.
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2.  Reliving Arithmetic Through the Eyes of Base-Two

By now we should be beginning to see how learning a rithmetic may
depend on the base we use for place value.  One bas e might be more
helpful than another in one situation but less help ful in another.  In that
respect, think about how often students complain ab out how difficult it is
for them to “memorize” the multiplication tables.  Thi nk of how much
easier they would find it to be if there were fewer  than ten single digits to
memorize.  What, then, is the smallest base we could  use?

The fact that in any number base the base is repres ented by the numeral 10
means that any number base must contain at least th e two digits 0 and 1.
Hence, the smallest number base that can exist is b ase two.  It might not
seem that a number base that small would be very pr actical; but, in fact, it
is.

Reason #1 :

The fact that we have ten fingers made it rather na tural for us to choose
ten as the base of our place value system of numera ls.  However,
computers, in a manner of speaking, have only two f ingers.  Namely, a
switch is either off or on.  Thus it is natural to use only 0 and 1 to
“code" these two possibilities.

Reason #2:

The fact that a switch is either on or off means th at we can use, say, 0
to stand for “off” and 1 to stand for “on”.  The point is that the same
numeral scheme can be used in any situation in whic h there are only
two mutually exclusive possibilities.  Thus:

•  With respect to sets, an element is either in th e set or it's not.  In
this case, it is traditional to let 0 represent “the  element doesn't
belong to the set” and 1 to represent “the element do es belong to
the set.

•  With respect to flipping a coin, each toss will be either a head or a
tail.  We might, therefore, let 0 denote “tails” and 1 denote “heads”.

•  With respect to “true/false” statements, we might let 0 denote a
false statement and 1 to denote a true statement.

In any event, let's learn how the arithmetic would have looked if we had
used base two instead of base ten.  Practice Proble m #1 serves as a review
of some of our earlier comments.
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Practice Problem #1 :

In base-two arithmetic the only single digits are 0  and 1.  Pretend you
are a youngster who has just learned to write the n umerals that
represent the numbers from one through ten.  Show h ow you would
write these numbers using base-two numerals.

Answer:  1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1002

Solution:

We could view a base-two odometer as our model for the number
line.  namely, suppose we have an odometer where ea ch gear has
only the two faces, 0 and 1.  Whenever a face reads  1, after the next
mile it would read 0 and make the face of the gear to its immediate
left increase by 1.  That is:

    

Miles Driven Base-Two Reading Base-Ten Reading
none 00000 0000
one 00001 0001
two 00010 0002

three 00011 0003
four 00100 0004
five 00101 0005
six 00110 0006

seven 00111 0007
eight 01000 0008
nine 01001 0009
ten 01010 0010

eleven 01011 0011
twelve 01100 0012

thirteen 01101 0013
fourteen 01110 0014
fifteen 01111 0015
sixteen 10000 0016

So just as we learned to memorize how numbers were w ritten, a
person living in the base-two system would learn to  count 1, 10 , 11,

3

100, 101, 110, 111, 1000, 1001, 1010 etc.

3To avoid confusing (10) with what we call 10, read (10)  as if it were written (one-zero)   In a>A9 >A9 >A9

similar way we'll read (11) as (one-one) , etc.>A9 >A9
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From the way counting proceeds in base two it's eas y to see that the only
arithmetic tables you would need in order to perform  the arithmetic
algorithms are:

   

Addition Multiplication

 0 + 0 = 0 0 0 = 0

 0 + 1 =  1 0 1 = 0

 1 + 0 = 1 1 0 = 0

 1 + 1 = 10 1  1 = 1

‚

‚

‚

‚

While the tables are simple to learn, notice how ma ny digits are necessary
for us to use in order to express relatively small numbers. 4

Practice Problem #2 :

Using the above table find the sum of 111 and 101.  In other words:

 (111) (101) ? )two two two� œ Ð

Answer:  (111) (101) 1100 )two two two� œ Ð

A “Pre-Solution” Note :

One of the reasons that different number bases were  eliminated from
many curricula was that the topic simply became one  of rote.  That
is, students would often simply translate a problem  involving a
different number base, as in this example, base-two , into the more
familiar base-ten system; answer the question as a base-ten
question and then translate the answer back into th e different base. 5

4For example, using base-ten numerals we see that 2  = 1,048,576.  However in the language of base-two20

arithmetic, we represent 2 as 10 and thus written in base ten 2  would be represented by  a 1 followed by20

twenty 0's.  In other words, (1,048,576)  = (100,000,000,000,000,000,000) ; which means a numberten two

that can be expressed using seven digits in base ten might require twenty one digits to express it in base
two.
5This is analogous to how people first learn to answer a question that is posed in a foreign language that
they  are learning.  That is, they hear the problem in the foreign language, silently translate it into their
own language; still silently, they answer the question in their own language; and finally, they translate
their answer back into the foreign language (Bilingual is when the person goes directly from hearing the
problem in the foreign language to answering it in the foreign language). In this context, students never
learned to understand different number bases in a “bilingual format”
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Thus one way to solve this problem is to rewrite (1 11)  as 7 intwo

base-ten and .(101)  as 5 in base-ten.  So in the la nguage of base-two

ten, the problem asks “Find the sum of 7 and 5”. In t he comfort of
base-ten we see that the answer is 12.  As our fina l step we rewrite
12 as it would be written in base-two namely;

  12 1(8) 1(4) 0(2) 0(1) (1100) .œ � � � œ two

While this gives us the correct answer, it makes it  seem as if we first
had to know base-ten arithmetic in order to do base -two arithmetic.

However, in this and in the following problems we w ant to emphasize
that the concept of place value is independent of t he number base. In
particular, no matter what base people were used to  using, they
would learn to count; after which they would learn their “tables”; and
then use the same algorithms for arithmetic that we  use in our own
base-ten system.  This is indicated in the solution  below.

Solution:

--  We begin by writing the problem in exactly the same way we
would have if this had been a base-ten problem.

   
1 1 1
1 0 1�

--  Then starting in the ones place we begin the ad dition by looking
at the table and saying “1 1 10.  Put down the 0 and c arry the 1”.� œ

   
1 1 1
1 0 1

0

1

�

--  We then move to the 10's (that is 10 ) place and  we saytwo

“1 1 10, 10 0 10.  Put down the 0 and carry the 1”.� œ � œ

   
1 1 1
1 1

0 0

1 1

"
� !

--  We then move to the 100's place and say “1 1 10 10 1 11� œ Þ � œ Þ
Put down the 1 and carry the 1.

   
1 1 1
1 0 1
1 0 0

1 1 1

�
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--  Finally, we move to the last place and bring do wn the 1, thus
yielding:

   
1 1 1
1 0 1

1 1 0 0

1 1 1

�

   

Notes:

•  The person doing arithmetic in base two would ne ver think of
writing 1 1 2.  Namely, the digit 2 doesn't exist in base two� œ
arithmetic.  In essence the base two person memorize s how to
count, learns the tables and then carries out the a ddition algorithm
in exactly the same way that we do addition in our own base-ten
system.

•  As teachers, trying to think in terms of base tw o arithmetic might
give you some indication of what youngsters go thro ugh when they
first try to learn base ten arithmetic.

•   Again, if it's easier to think in terms of mone y, we may view the
problem in the form:

 
$8 $4 $2 $1

1 1 1
1 1
2 1 2
2 2 0 We trade in two $1's for one more $2
3 0 0 We trade in two $2's for one more $4

1 1 0 0 We trade in two of our $4

� !

Ã

Ã

Ã 's for one $8.

While this is a nice way to visualize what we did mo re abstractly
above, it again gives the illusion that we have to use the digits 2, 4
and 8 when we talk about base-two arithmetic.
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•  Independently of any other uses for teaching dif ferent number
bases, the topic gives us a good way to have studen ts provide drill
that otherwise might have seemed tedious.

For example, given the number fact

 (111) 101 1100two two two� Ð Ñ œ Ð !Ñ

we can ask students to convert the numbers from bas e two to
base ten and then see if the resulting statement is  true.  In terms of
the present problem, we would see that: 

     

1 base ten
1 1 1 7
1 0 1 5

1 1 0 0 12

8 4 2

Ä
� Ä

Ä

 Practice Problem #3

Using the above table compute the value of (1100) (1 1) .  Intwo two�

other words, find the value of ?,  if   (11) (?) (110 0 ) .two two two� œ

Answer:   (1100) (11) (1001)two two two� œ

Solution:

Method #1:  The “Unadding” Technique :

We're in the base-two system and we want to see wha t we must add
to 11 to obtain 1100 as the sum.  So we simply coun t from 11 to
1100.  That is:

11 100 101 110 111 1000 1001 1010 1011 1100

one two three four five six seven eight nine

ß ß ß ß ß ß ß ß ß
Å Å Å Å Å Å Å Å Å Å

6

(1) (10) (11) (100) (101) (two two two two two 110) (111) (1000) (1001)two two two two

Thus by counting we see that 11 1001 1100� œ

Method #2:  The Monetary Model

In terms of our $1, $2, $4, $8, etc. model, 11 mean s $2  $1 and 1100�
means $8 $4. Thus the question becomes “What denomina tions�
must we add to $2 $1 to obtain $8 + $4.  In this con text:�

-- we can begin by adding $1 to $2 +$1.  In that ca se we would
now have

6Note that the  words “one”, “two”, etc. are our own.  The person in base-two would write them as 1, 10,
11, 100, etc.
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$2 2($1).  This, in turn is the same as $2  $2  or $ 4.� �

--  and if we now add $8 more we obtain $8 $4.�

--  therefore, we added $1 $8 to $2 $1 to obtain $8 $4 as� � �
the sum.

Method #3:  The “Traditional” Algorithm.

In this method we write the usual vertical form:

   
1 1 0 0

1 1 �

To set the problem up properly, knowing that we can 't subtract
1 from 0, we go to the 100's place and “borrow” the 1 , thus
converting the 0 in the 10's place into 10.  That i s:

   1 1 0 0
1 1

!
Î



"

�

We then borrow 1 from the 10's place, thus leaving us with 1 there
and converting the 0 in the 1's place to 10.  That is:

   
1 0 01

1 1

! 1
" Î



" "

�

Recalling that in this system 10 1 1, we now subtract  in the� œ
usual way to obtain

   
1 1 0

1 1
1 0 0 1

! 1
Î !Î



" "

�

   

As a check, we see that (1100) 12, (11) 3 and (1001) 9 .two two twoœ œ œ
Thus  means the same thing as(1100) (11) (1001)two two� œ two

12 3 9, which is a true statement.� œ
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Multiplication and division are particularly simple  in base-two arithmetic.
The ease is based on the following.

Practice Problem #4 :

What is the value of b if (2 10) (20) ?‚ œb b

Answer :  b 2�

Solution:

The fact that the digit 2 appears indicates that th e base has to be at
least three (why?).  Once we know that b has to be at least three, we
know that in the multiplication tables 2 1 2.  Hence,  based on‚ œ
our adjective/noun theme, 2 b 2b .  No matter what the  actual‚ œ 7

base is, in that base b will always appear as 10.  In other words, in
any base greater than 2, 2 10 20‚ œ Þ

Notes :

•  One reason that many students like base-ten arit hmetic is because
it's so easy to think in terms of 10.  While the im portance of the
number ten is basically limited to base ten arithme tic, the point is
that in any number base, we would find it easy to t hink in terms
of 10.

• In particular, this problem indicates that the ni ce property of
“annexing” a 0 to multiply by 10 works in any number base.

•  The result extends to all powers of 10.  That is , 2 100 200‚ œ ß
2 1000 2000 etc.‚ œ

•  The fact that in base-two the only single digits  are 0 and 1 means
that the concept of repeated addition is particular ly user friendly.
For example:

7That is 2 b means the same thing as 2b's.‚
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Practice Problem #5 :

Again using the above tables, compute the product

   (1011) (1001)two two‚

Answer:  (1011) (1001) 1100011)two two two‚ œ Ð

Solution:

Method 1:  The Traditional Algorithm

We use the addition and multiplication tables.  The y are simple to
memorize.  Namely

1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 10‚ œ ß ‚ œ ‚ œ ‚ œ à � œ � œ ß � œ Þ

  

1 0 1 1
1 0 0 1
1 1 1

0 0 0 0
0 0 0 0

1 0 1 1
1 1 0 0 0 1 1

‚

!
�

1

1

Method 2:  The Distributive Property

 

1011 1001
1011 (1000 1)
(1011 1000) (1011 1)
1011000 1011 (why?)

‚ œ
‚ � œ
‚ Ñ� ‚ œ

�

Notice that the last sum is precisely what we obtai ned when we used
the traditional algorithm.  The previous result is reproduced below
with the “0 rows” omitted and 0's added to the bottom  row.  That is:

  

1 0 1 1
1 0 0 1
1 0 1 1

1 0 1 1 0 0 0
1 1 1 1

‚

"

0 0 0
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Once you feel comfortable with the concept of place  value being
independent of base ten, you can still use base ten  to check your
results.  For example:

(1011) 1(8) 0(4) 1(2) 1(1) 8 2 1two œ � � � œ � � œ 11

(1001) 1(8) 0(4) 0(2) 1(1) 8 1two œ � � � œ � œ 9

(1100011)two œ

1(64) 1(32) 0(16) 0(80 0(4) 1(2) 1(1)� � � � � � œ 99

Hence, translated from base-two to base-ten we see that we get
the true statement 11 9 99‚ œ

Practice Problem #6 :

Again using the above tables, compute  (100011) (101 ) .  Thattwo twoƒ
is, find the value of ? if  (101)  (?) (100011) .two two two‚ œ

Answer:   (100011) (101) (111)two two twoƒ œ Ð

Solution:

An efficient way to begin might be to use rapid rep eated addition.
That is,

  

101 1 101
101 10 1010
101 100 10100
101 1000 101000

‚ œ
‚ œ
‚ œ
‚ œ

101000 is greater than 100011.  Hence we cannot sub tract 1000
101's  (that is, 1000 101).  However we can subtract 100 101's.8 ‚
Namely:

   
1 0 0 0 1 1

1 0 1 0 0
1 1 1 1

� Ð =Ñ( 100 101

10  101's is equal to 1010.  Hence we can subtract 10 10 from 1111 to
obtain:

   

1 0 0 0 1 1
1 0 1 0 0

1 1 1 1
1 0 1 0

1 0 1

�

�

(100 101's)

(10 101's

8to avoid confusion you might be tempted to write a thousand 101's rather than 1000 101's.  However, be
careful.  In the present context 1000 represents eight, not one thousand.
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And since 101 1 101, we can conclude our repeated sub traction‚ œ
by writing

   

1 0 0 0 1 1
1 0 1 0 0

1 1 1 1
1 0 1 0

1 0 1
1 0 1 (

0

�

�

�

(  101's)

(  101's

 101)

100

10

1

As a  check, note that

   (101) 5 (111)  and (100011) 35two two twoœ ß œ ( œ Þ

Therefore

    (100011) (101) (111)two two twoƒ œ

translates into  

    35 5 7;ƒ œ

which is a true statement.

Notes :

•  There are many nice things about base two arithm etic.  One of them
concerns the division algorithm. More specifically,  in base ten
arithmetic there are ten possible remainders when w e divide one whole
number by another. However in base two arithmetic t here are only two
possible remainders, 0 or 1.

•  This greatly simplifies the computation when we perform the division
algorithm.  Namely if the partial dividend is great er than the divisor,
then the divisor “goes into" the dividend just one t ime.  Thus, unlike in
greater bases,  there is no need to use trial and e rror.

•  With respect to the present problem, let's see h ow the division
algorithm would have worked.  We keep in mind that in base two
10 1 1, and we start by writing the problem in the fo r� œ

 1 0 1 1 0 0 0 1 1

We look at the dividend and see that it's at the th ird 0 where the
dividend (1000) is greater than the divisor (101).  Hence, without
hesitation, we may place a 1 above the third 0 and write:

 1
1 0 1 1 0 0 0 1 1
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Then, in the “usual” way we multiply 101 by 1 to obta in 101 and we then
subtract 101 from 1000 (needing only to remember th at 10 1 1) to� œ
obtain:

 1
1 0 1 1 0 0 0 1 1

1 0 1
1 1

�

We then “bring down" the 1 and proceed as before:

 1 1
1 0 1 1 0 0 0 1 1

1 0 1
1 1 1
1 0 1

1 0

�

�

Finally, we bring down the last digit in the divide nd and repeat the
above process

 1 1 1
1 0 1 1 0 0 0 1 1

1 0 1
1 1 1
1 0 1

1 0 1
1 0 1

0

�

�

�

While we do not advocate using this method in class  (other than for a form
of enrichment), hopefully this demonstration helps clarify the long division
algorithm by eliminates the need to use trial-and-e rror techniques.

3. The Method of Duplation :

Although place value wasn't to be invented until ma ny centuries later, the
ancient Egyptians, in effect, used base-two arithme tic in their algorithm for
multiplying whole numbers.  The algorithm was known  as the method of
duplation.   It consisted of knowing only how to double a numb er and add.
For example, to compute 37 19.  They would start wi th the fact that‚
37 1 = 37; and they would then keep doubling 37 as shown in the‚
following chart:
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37 1 = 37
37 2 = 74
37 4 = 148

37  8 = 296
37 16 = 592

‚

‚

‚

‚

‚

Knowing that 19 = 16 + 2 + 1, they would then check  the rows in which 16, 2
and 1 appeared to obtain:

   37 4 = 148

37 1 =
37 2 =

37  8 = 296
37 16 =

����

����

����

‚

‚

‚

‚

‚

37
74

592

They would then add 37, 74 and 592 to obtain 703.  In summary:

37 19 = 37(16 + 2 + 1) = (37 16) + (37 2) + (37 1)‚ ‚ ‚ ‚

A Note For the Classroom.

Certainly the method of duplation is more tedious t han the traditional
algorithm for multiplication.  However, it is an in teresting way to
emphasize how logic can convert complex problems int o a series of
simpler problems.  Moreover, it is quite likely tha t many students will
enjoy seeing this method and, in fact, might be tem pted to check the
results by doing the problems the “regular way”.

As an additional aside, the method of duplation was  modified under the
Russian Tsars and became known as the Russian Peasa nt Method.
The name came about because the Tsar wanted to find  a simple
method whereby one could perform multiplication kno wing only how to
multiply and divide numbers by 2 and add. The metho d began with the
assumption that if you doubled one factor in a mult iplication problem
and halved the other, the product would not be alte red.  This method
would work very simply if at least one of the facto rs was a power of 2.
For example, suppose we wanted to compute 32 16.  U sing a‚
horizontal array rather than a vertical array, we co uld write:

  
16 8 4 2 1
32 64 128 256 512‚

Notice that we got from one column to the next by h alving one number
and doubling the other.  Hence in each column the p roduct is the same
as 32 16.  In particular, we see at once that the p roduct in the column‚
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furthest to the right is 512.  Therefore the produc t in each column,
including the column furthest to the left (i.e., 16 32) must also be 512.‚

The major problem occurs when neither of the two nu mbers is a power
of 2.  In particular, let's revisit 37 19.‚
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Step 1:

We proceed in the same way that we proceeded above but whenever
there is a remainder when we divide by 2, we simply  discard it!  We
would then obtain:

  
19 9 4 2 1
37 74 148 296 592‚

Step 2:

We then place a check mark check next to each odd n umber in the
top row:

  
19 9 4 2 1

   37 74 148 296 592
� � �� � �� � �� � �

‚

Step 3:

We then add the numbers that appear under the check  marks to
obtain the product of 37 and 19.

  

19 9 4 2 1
   37 74 148 296 592
  

             = 703

� � �� � �� � �� � �

‚

� �

37 74 592

37 74  592
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4.  Revising History:  Base Five Arithmetic :

In this section we will look at a bit of “revisionis t history”.  Namely, we'll
assume that because it was easier to keep track of numbers by counting
on the fingers on one hand rather than on both hand s,  ancient civilizations
decided to use five, rather than either ten or twen ty, as the base of their
counting systems.  Thus, for example, the Romans wo uld have used the
letter  to stand for five rather than for ten.  In that way, I would nowX X9

represent  | | | | |    |, or six.î
X

Practice Problem #7

In terms of the revised Roman numeral system, what number (written
in our traditional base ten format) is represented by I?XXX

Answer:  sixteen

Solution:

In this system,  is an abbreviation for  I I I I I.   Hence I is anX XXX
abbreviation for  I I I I I    I I I I I    I I I I  I   I.  Since the number that is
represented by the Roman numerals does not depend o n how the
numerals are grouped, we move the second group of f ive tally marks
closer to the first group of five and we can move t he single tally mark
at the end closer to the third group of five; thus giving us the
arrangement:  I I I I I I I I I I    I I I I I I, w hich we recognize as naming
the number we write as 16. 10

Notes:

• If we simply wanted to obtain the answer almost b y rote, we would
note that since  stood for five,  would stand for 3  five's orX XXX
fifteen, and 15 1 16.  However such an approach defea ts the� œ
purpose of what a number base really means; at leas t in the sense
that once we say that  stands for five, there shoul d be no need toX
refer to base ten to do arithmetic.  In other words , writing 3 5 15‚ œ
and/or 15 1 16 make it seem that we need base ten ari thmetic in� œ
order to do arithmetic in base five.

9We changed the color of X in order to help avoid confusion.  That is, it would be confusing to have X
stand for both five and ten.  However it is easy to distinguish between X and .  We could have chosen aX
completely different symbol to represent five but we want to maintain the flavor of what happened
historically.
10Notice the difference between saying “sixteen” and writing 16.  The word “sixteen” means the number
which when represented by tally marks looks like | | | | | | | | | | | | | | | |.  The tally marks may be regrouped in
many ways and when we write 16 it assumes that we have grouped them into one batch of ten and another
batch of six.
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•  The point is that if place value had been develo ped as a
continuation of our “revisionist history”, there woul d have been no
numerals 5, 6, 7, 8 or 9 and only the digits 0, 1, 2, 3 and 4 would have
been used.  In particular, 10 now would represent f ive and 100 would
represent twenty five (that is, five five's) To see this in a rather11.  

interesting way, imagine an automobile odometer tha t used base
five.  Each gear would have five faces named 0, 1, 2, 3 and 4.
Looking at the gear in the ones place, it would kee p repeating the
cycle 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0....Thus on a brand new car, after it
had been driven for 4 miles the odometer would read  000004; and
after the next mile it would read 000010.

•  The idea of an odometer also applies to bases th at are greater than
ten.  For example if we were to construct a base-tw elve odometer,
each gear would have to have twelve faces, all name d by a single
digit because the first multi-digit numeral, 10, no w stands for 1
twelve and no ones; that is, (10)  = (12) .twelve ten

•  In the base-twelve system, the numbers, ten and eleven would
have to be represented by single digits, such as T (for "ten") and E
(for "eleven").  One would then have counted: 1, 2,  3, 4, 5, 6, 7, 8, 9,
T, E, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1T, 1E, 20, ...12

•  As a classroom activity, using the odometer as a  model is
probably a good way to visualize how counting would proceed in any
given number base.

11When we write five (as opposed to writing 5) we are talking about a number that is independent of any
base.  In other words, in terms of tally marks, 5 represents | | | | |.  In terms of our own place value system
this number is represented by the numeral 5 while in our revised Roman numeral system it is represented
by the numeral 10.  To avoid confusion when we use a base other than ten we should read 10 as “one
zero” in order not to confuse it with the number ten.
12Note that those of us who live in the base-ten numeral system no more need to use T and E than the
person who lives in base five would need to use the numerals, 5, 6, 7, 8 and 9.
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Practice Problem #8 :

Suppose the Romans had decided to let  represent | | |.  WhatX
number (written as a base-ten numeral) would be rep resented by
XXI?

Answer:   (

Solution:

If  represents | | |,  represents | | |   | | |.X XX

Hence, I represents | | |   | | |  |.  Counting the tally marks we seeXX
that there are seven of them; and in base ten, seve n is represented
by the numeral 7.

Note

The notation (  )  is used to indicate that the nume ral inside theb

parentheses is representing how the number would be  written in
base b.

Practice Problem #9 :

Write the number represented by (15)  in the form of  a base-seventen

numeral.

Answer:  (21)seven

Solution:

In terms of tally marks, (15)  means:ten

  | | | | | | | | |     | | | | |

However to indicate that we're “trading in” by seven' s we could
move three of the tally marks from the group of ten  and annex them
to the group of five to obtain, as shown below, one  group of seven
tally marks and a second group with eight tally mar ks:

 | | | | | | |      | | | | | | | |

The second group of tally marks can then be rewritt en as one group
of seven and another group with just one.  That is:

 | | | | | | |      | | | | | | |    |

In base-seven,  would represent | | | | | | |; therefore  | | | | | | |      | | | |X
| | |    | would have been written as I and in place va lue notation weXX
would write this as (21) .seven
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Notes:

•  This might be a nice place to have students visu alize the result in
terms of a base-seven odometer.  In this odometer, there are only the
seven faces 0 1 2 3 4 5 and 6.  After 6 the numeral 0 co mes up andß ß ß ß ß
causes the numeral on the gear to its left to incre ase by 1. So, for
example:

Miles Driven Base-Seven Reading Base-Ten Reading
none 0000 0000
one 0001 0001
two 0002 0002

three 0003 0003
four 0004 0004
five 0005 0005
six 0006 0006

seven 0010 0007
eight 0011 0008
nine 0012 0009
ten 0013 0010

eleven 0014 0011
twelve 0015 0012

thirteen 0016 0013
fourteen 0020 0014
fifteen 0021 0015

•  Students may find it easier to think in terms of  money.  With
respect to base seven imagine a monetary system in which the only
denominations are $1-bills, $7-bills, $49-bills etc . (where seven of
any denomination can be exchanged for one of the ne xt greater
denomination).  In this system we can buy a $15 ite m by using two
$7-bills and one $1-bill.  That is, (15) (21)ten sevenœ
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5.  A Note on Base One Thousand

The idea of counting by thousands, millions, billio ns, trillions etc. is, in
effect, using one thousand as a number base. This m ay seem a bit far-
fetched but to see what we mean recall our previous  discussion when we
talked about viewing 5 tens and 13 ones as 513.  We  said that in order not
to confuse this with 5 hundreds, 1 ten and 3 ones, we could represent 5
tens and 13 ones by using parentheses and writing 5 (13).  That is,
everything within parentheses is treated as one num ber.  In that context,
for example, (51)(213)(4) would stand for 51 hundre d, 213 tens and 4 ones.

What may be somewhat of a surprise, notation such a s 513,723,912,415 is a
somewhat disguised version of base-one thousand ari thmetic. Namely,
suppose we used parentheses rather than commas and wrote the number
as (513)(723)(912)(415), which would be read as “513  billion, 723 million,
912 thousand and 415 ones.  In this context, we hav e the thousand
numerals 000 through 999 as our adjectives and the denominations are
units, thousands, millions and billions.  Thus inst ead of trading in ten of
one denomination for one of the next higher denomin ation we trade in a
thousand of one denomination for one of the next hi gher denomination.

Whereas it was relatively simple in base-ten to mem orize the tables
through 9 and then let place value take over, it wo uld be a monstrous task
to use a place value system in which we had to memo rize the tables
through 999.  That's why we preferred to use commas  and still work as if
we were in base-ten.  From the point of view of usi ng an odometer, we
would have to have each gear have 999 faces and the  next number after
999 on a gear would then be 000.  So, for example, after 2(999)(999) would
come 3(000)(000). etc.
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6.  “Numbers Versus Numerals” Revisited

Consider the “pseudo-syllogism”:

Cat is a three-letter word.
All cats chase mice.
Therefore, some three-letter words chase mice .

Our “silly” conclusion follows from the fact that in actuality the first two
statements have different subjects.  Namely, in the  first statement we are
referring to the , “cat”; while in the second stateme nt we are referringword
to the , cat.  In other words, it would have been m ore precise to haveanimal
written:

“Cat”  is a three-letter word.
All cats chase mice.

As we have seen throughout our course, there is a b ig difference between a
number (which, unless it is clear from context, we usually spell) and the
numeral  that names that number.  For example we would writ e “eight”
when we talked about the number but we would write 8 (or 5 3, etc.)�
when we were talking about the numeral that represe nted the number eight.

Thus when we study number theory we have to disting uish it from the
study of “numeral” theory.   To emphasize this point i n more detail., let's
look at the following examples:

Practice Problem #1 0:

Is the following explanation correct?

“Because (32)  ends in an even digit, it must represe nt an evenfive

number”.

Answer:  No

Solution:

(32)  means 3(five's) 2(ones) (15) (2) (17) andfive ten ten ten; � œ � œ

(17)  is an odd number.ten

Notes:

•  In terms of tally marks we may view (32)  as | | | | |   | | | | |   | | | | |five

| |.  If we now group the tally marks in pairs, we ob tain | |  | |  | |  | |  | |
| |  | |  | |  |.

The point is that even and odd are defined in terms  of
divisibility by two.
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•When we group seventeen tally marks in sets of two , there is one
tally mark that is left unpaired.  The seventeen ta lly marks do not
know how we intend to group them; but no matter wha t base we use
(or even if we don't think in terms of a number bas e) they always
represent an odd number.

•  This result holds for any odd base.  For example :

 -- (32)     (23)seven tenœ

 --  (32)      (29)  nine tenœ

 --  (32)  (35)eleven tenœ

In terms of the above problem we have shown that so me numeral
properties depend on the base we are using.  Howeve r, there are times
when a property belongs to a number, independently of what base the
number is being viewed.  For example:

Practice Problem #1 1

In what number bases is nine a perfect square?

Answer:  Every number base

Solution

Let's look at the number, nine.  No matter what bas e we choose, nine
will always be a perfect square.  Namely, by the ju dicious use of tally
marks (the number of which is independent of place value), we see that
nine tally marks can be arranged to make a three by  three square.  That
is:

     
l l l
l l l
l l l

Note:

In the earlier grades students prefer squares to ta lly marks.  Thus
you might want to replace the diagram above by
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Of course, the way this result would be expressed i n place value
depends on the base we are using.  For example,

--  In base five, nine would be written 14 and we w ould then say that
3  = 14.2

-- In base three, three would be written as 10 and nine would be
written as 100.  Hence in base three the fact that nine is a perfect
square would be written as 10 100.2 œ

At any rate this ends our discussion of different n umber bases, at least for
the time being.

In the next lesson we shall begin our discussion on  fractions.


